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We study pattern formation in the bounded confidence model of opinion dynamics. In this
random process, opinion is quantified by a single variable. Two agents may interact and reach a
fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from
a uniform distribution of opinions with compact support, a traveling wave forms and it propagates
from the domain boundary into the unstable uniform state. Consequently, the system reaches a
steady state with isolated clusters that are separated by distance larger than the interaction range.
These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations
between them are nearly constant. We obtain analytically the average separation between clusters
L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. The
spatial periods of these modulations are a series of integers that follow from the continued-fraction
representation of the irrational average separation L.

PACS numbers: 89.75.Kd, 82.40.Ck, 05.45.-a

The so-called “bounded-confidence” model [1–7] and
variants thereof have been widely used to model opin-
ion dynamics [8–14] and have attracted a considerable
amount of interest. The bounded confidence model is
appealing because it captures the tendency for reaching
compromise through social interactions, while also taking
into account a certain degree of conviction. Numerical
studies show that political parties emerge in the bounded
confidence model as a result of a pattern formation pro-
cess [1, 3, 4]. In this letter, we obtain analytically the
wavelength governing this process.

We focus on a version of the bounded confidence model
in which opinions are quantified as discrete variables
1 ≤ n ≤ N . In each interaction, two agents with opin-
ions n1 and n2 change their initial opinions by adopt-
ing the average opinion (n1, n2) → (n1+n2

2 , n1+n2

2 ); such
a compromise occurs only when the opinion difference is
smaller than some fixed threshold |n1 − n2| ≤ σ. We
set the threshold σ = 2 and exclude interactions between
agents whose opinion difference equals one, |n1−n2| = 1,
to ensure that opinions remain discrete variables. In this
simplified version of the bounded confidence model, opin-
ions change according to [4]

(n − 1, n + 1) → (n, n). (1)

Clearly, this process conserves population and opinion.

Let Pn(t) be the probability density of agents with
opinion n at time t. This density obeys the rate equation

dPn

dt
= 2Pn−1Pn+1 − Pn(Pn−2 + Pn+2). (2)

In writing this equation, we implicitly take the infinite
population limit. It is simple to check that Eq. (2) con-
serves population,

∑

n Pn, and opinion,
∑

n nPn.

The initial distribution of opinions is uniform with

compact support,

Pn(0) =











0 n < 1,

1 1 ≤ n ≤ N,

0 N < n.

(3)

We view the parameter N as the opinion “spectrum,”
and also note that N is the only parameter in the model.
The evolution equation (2) is invariant under the scaling
transformation P → αP and t → t/α and hence, we may
set the uniform initial density to unity. This choice allows
us to compare systems with different opinion spectrums.

The nature of the interaction (1), also reflected by the
evolution equation (2), implies that any probability den-
sity that satisfies Pn−1Pn+1 = 0 for all n is stationary.
Clearly, there are infinitely many such steady-state solu-
tions. Starting from the (unstable) initial condition (3),
the deterministic rate equation (2) evolves the system
toward one of those (stable) steady-state solutions [3].

In the final state (i.e., in the limit t → ∞), the sys-
tem reaches a steady state where Pn−1(∞)Pn+1(∞) = 0
for all n. In this state, there are multiple opinion “clus-
ters” with each cluster localized to two neighboring lat-
tice sites (see figure 1). These clusters are noninteracting
because the separation between them exceeds the inter-
action range.

To quantify the size and opinion of each cluster, we
compute for every pair of occupied lattice sites the
mass m = Pn(∞) + Pn+1(∞) and the non-integer posi-
tion x = [nPn(∞) + (n + 1)Pn+1(∞)]/m. Let mi be the
mass of the ith cluster and xi be the position of the ith
cluster. Conservation of population and opinion sets the
sum rules

∑

i mi = N and
∑

i mixi = N(N + 1)/2.
Unlike the probability density, the cluster mass forms a

quasi-periodic pattern (see figure 1) as clusters of nearly-
identical mass are separated by a nearly-identical dis-
tance. This pattern can be characterized by the average
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FIG. 1: [bottom] The probability density Pn(∞) versus n.
[top] The cluster mass m versus position x. Shown are re-
sults of integration of (2)-(3) with N = 109. The dashed line
corresponds to the theoretical value L = 5.671820.

mass 〈m〉 of the clusters

L = lim
N→∞

〈m〉. (4)

Due to conservation of population and opinion, the quan-
tity L also equals the average separation between clus-
ters. With this definition, the average number of clusters
scales as N/L in the limit N → ∞. Previous numerical
studies reported the value L ≈ 5.67 [4]. In this letter, we
use theoretical methods to analyze the evolution of the
probability density Pn and analytically obtain L as the
wavelength that governs the underlying pattern forma-
tion process.

The uniform initial state (3) is unstable with respect to
perturbations that propagate from either boundary into
the unstable uniform state [15, 16]. By substituting the
small periodic disturbance

Pn(t) − 1 ∝ exp[i(kn − ωt)] (5)

into the evolution equation (2) we find the dispersion
relation between frequency ω and wavelength k,

ω = 2i(2 cos k − cos 2k − 1). (6)

Because the quantity −iω is positive for 0 < k < π/2,
perturbations with wavenumber in that range initially
grow exponentially with time. The fastest growing mode,
by ordinary linear stability analysis, follows immedi-
ately from (6). The maximum of −iω in (6) is set by
dω/dk = 0 which yields klinear = π/3 or alternatively
Llinear = 2π/klinear, that is, Llinear = 6.

The perturbations propagate from the stable state into
the unstable state at a constant velocity v (see figure
2). A saddle point analysis shows that the propagation
velocity v obeys (for a comprehensive review see [17] and

n

P
n

FIG. 2: Propagation from the stable into the unstable
state. Shown is Pn(t) at equally spaced time intervals (t =
100, 150, 200, . . . , 400) versus n. The curves Pn(t) are shifted
vertically with the earliest time at the bottom and the latest
time on top.

also [18–21])

v =
dω

dk
=

Im[w]

Im[k]
. (7)

The solution to this equation is the complex wavenumber
k∗ ≡ kfront + iλ with kfront = 1.183032 [4]. The constant
λ = 0.467227 characterizes the exponential decay of these
periodic perturbations Pn − 1 ∼ e−λ(n−vt) eikfront(n−vt).
The wavelength of perturbations at the leading edge of
the front is Lfront = 2π/kfront or explicitly,

Lfront = 5.311086. (8)

Moreover, the propagation velocity v = Im[w∗]/Im[k∗]
where w∗ ≡ w(k∗) is

v = 3.807397. (9)

Our numerical results confirm that in the leading edge
of the propagating front, the wavelength of the periodic
deviations from the uniform state is indeed given by (8).

Far behind the traveling wave, that is, in the wake
of the wave, the system reaches a steady state with
Pn−1Pn+1 = 0 for all n ≪ v t. In this region, clusters are
fully-developed. Interestingly, far behind the propagat-
ing front, the pattern that forms, and which ultimately
controls the spacing between clusters, has a larger wave-
length due to a Doppler-like effect. The frequency of
oscillations in the front w∗ − k∗v, measured in the co-
moving frame, translates to a zero frequency in the rest
frame and hence, to stationary patterns, precisely for the
wavenumber [17, 20, 22]

k = k∗ −
w∗

v
. (10)

We note that unlike the Doppler effect, the normalized
shift in wavenumber (k∗ − k)/k∗ does not equal a ratio of
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FIG. 3: The cluster mass m versus position x. The red line
corresponds to the theoretical value (11) and the blue line,
to a 100-point running average. We note that the mass m

exhibits a periodic-like pattern. We also stress that clusters
are separated at a distance of roughly L from each other, and
that there are no multiple values of m for the same value of
x.

two velocities as it is complex. The resulting wavenumber
(10) is k = 1.107789 and the corresponding wavelength
L = 2π/k is

L = 5.6718200283. (11)

Hence, out of the entire range of possible wavelengths cor-
responding to linearly unstable perturbations, 0 < L < 6,
the wavenumber (11) is “selected” by the dynamics of
Eq. (2). We also note the inequality Lfront < L < Llinear.
Our numerical results give excellent confirmation of the
theoretical prediction (see Fig. 3): the numerically-
measured wavelength L = 5.67185 is within 10−5 of (11).

To efficiently perform the computation, we integrated
the equations using a lattice with fixed size N that is
moving at the same speed as the traveling wave. Nu-
merical integration in this co-moving reference frame is
feasible because far ahead of the traveling wave Pn = 1
and far behind it, the system settles into a steady-state.
The lattice is shifted by one lattice site, n → n+1 when-
ever the deviation from the uniform state at the extreme
lattice site, far ahead of the traveling front, exceeds an
infinitesimal threshold, |PN − 1| > ǫ. We used a Runge-
Kutta (4,5) integration method with adaptive step size
below 10−3 on a lattice of size N = 2, 000 and the thresh-
old ǫ = 10−250, well above the smallest machine precision
10−308. To resolve the leading edge at this precision, we
integrated the equations for Qn = Pn−1 where the lead-
ing edge decays to the constant state Qn = 0. Whenever
the lattice is shifted by one site, time and the probabil-
ity density at the site n = 200, well behind the leading
edge, were recorded. This approach allows us to integrate
the equation to times t ≈ 3 × 106 and effectively, study
systems with very large opinion spectrums N ≈ 106.

The number of shifts at time t directly measures the
front position xf . As shown in figure 4, The numerically-
measured propagation velocity v = 3.80732 is in excel-
lent agreement with the theoretical prediction (9). It
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FIG. 4: The front location xf versus time t.

is remarkable that our computation, for which the ra-
tio between system size and wavelength is moderate,
N/L ≈ 350, yields such high-precision measurements of
L and v. In general, a cutoff error ǫ in the propagat-
ing front results in logarithmic correction δ ∼ (ln ǫ)−2 in
the propagation velocity [23]. Moreover, the cutoff de-
cays exponentially with system size, ǫ ∼ exp(−λN ). By
combining these two scaling laws, we find the algebraic
relationship between system size N and correction δ to
the velocity, δ ∼ (λN )−2. The velocity correction we
observe, δ ≈ 10−5 for N ≈ 103, is consistent with this
scaling law.

The irrational wavelength L in (11) is not commensu-
rate with the unit lattice spacing. As a result, the pat-
terns are not strictly periodic but rather, they are quasi-
periodic (see figure 3). Interestingly, we observed small
but striking “super-patterns” induced by near-resonances
between L and the lattice spacing. The integer periods of
these super-patterns are found from a continued-fraction
expansion of the wavelength

L = 5 +
1

1 + 1
2+ 1

21+ 1
4+...

≡ 6,
17

3
,
363

64
,
1469

259
, · · · . (12)

Indeed, 3 clusters can be accommodated within the in-
teger period 17. Figure 2 for the probability density Pn

shows that a large peak in the quantity Pn is usually fol-
lowed by two smaller ones. Hence, the system exhibits
quasi-periodic behavior with integer period 17.

Furthermore, there is also quasi-periodic arrange-
ment of clusters with integer period 363. Figure
5 shows that the cluster mass varies in the range
L − ∆ < m < L + ∆. The variation in cluster mass is
very small ∆/m ≈ 2 × 10−3. As a function of position,
these small variations in cluster mass repeat with inte-
ger period 363. According to the continued fraction in
Eq. (12), this pattern consists of 64 clusters. This intrigu-
ing behavior was overlooked in previous studies that used
much smaller values of the opinion spectrum N [3, 4]. We
also comment that intricate features such as the small
modulations in cluster mass can not be detected using
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FIG. 5: The cluster mass m versus position x (large square)
and versus shifted position x + 363 (small circle). The line
corresponds to the theoretical value (11).

Monte Carlo methods.
We stress that figure 5 includes roughly 500 clusters;

due to the lateral scale it appears that there are multiple
values of m for the same x, but that is not the case as
clusters are separated by distance of roughly L from each
other. The same holds for figure 6 which displays over
1, 100 clusters.

Interestingly, the simple evolution equation (2) leads to
a hierarchical pattern, governed by a series of integer pe-
riods. The primary pattern, as shown in figure 1 consists
of a nearly-periodic arrangement of clusters with nearly-
identical separation. On the first hierarchical level, M1

clusters are arranged in a nearly periodic super-pattern
with period L1. On the second hierarchical level, M2

patterns form a more intricate super-pattern with the
integer period L2. The fractions M1/L1, M2/L2, and so
on are rational approximations of the wavelength L that
follow from its continued-fraction representation (12).

To examine the robustness of the above behavior, we
also considered the compromise process (n− 1, n + 2) →
(n, n+1) where the interaction range is three lattice sites.
In this case, the probability density evolves according to
the rate equation

dPn

dt
= Pn−2Pn+1 + Pn−1Pn+2 − Pn(Pn−3 + Pn+3).(13)

This equation conserves population and opinion. Start-
ing from the initial condition (3), the probability density
evolves toward a steady state where Pn(∞)Pn+3(∞) = 0
for all n, and therefore, opinion clusters are now localized
to three consecutive lattice sites. By substituting (5) into
(13), the dispersion relation is

ω = 2i(cos k + cos 2k − cos 3k − 1). (14)

By repeating the analysis leading to (11) we obtain the
average separation between clusters and propagation ve-
locity

L = 8.5502770500 and v = 2.50631. (15)
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FIG. 6: The cluster mass m versus position x (large square)
and versus shifted position x + 1445 (small circle) for the
three-site interaction model in (13). The line corresponds to
the theoretical value (15).

Also, the wavelength of patterns nucleating at the front is
Lfront = 8.02282. Numerical integration of the evolution
equation gives L = 8.5503 and v = 2.5063, in excellent
agreement with the theoretical predictions.

Figure 6 demonstrates the emergence of super-
patterns. In this case, continued-fraction representation
of the wavelength (15) gives the rational approximations

L = 8 +
1

1 + 1
1+ 1

4+ 1
2+...

≡ 9,
17

2
,
77

9
,
171

20
,
1445

169
· · · . (16)

Figure 6 shows that modulations in cluster mass are pe-
riodic and well-characterized by the integer period 1445,
that follows from the continued fraction (16). Accord-
ingly, the super-pattern consists of 169 clusters. Fur-
thermore, the amplitude of the variations is very small,
∆/m ≈ 5 × 10−4.

We also examined a linear interpolation between (2)
and (13), modeling a compromise process where second-
or third-neighbor interactions occur with relative weights
τ and 1 − τ , respectively. We found excellent agreement
between the theoretical predictions and the numerical re-
sults for the wavelength L and the velocity v for all values
of τ . As expected, the wavelength decreases monotoni-
cally with the mixing parameter τ , which decreases the
effective interaction range. Surprisingly, however, the ve-
locity is not a monotonic function as it reaches a mini-
mum for τ ≈ 0.88. Thus, replacing a small fraction of
the second with third-neighbor interactions slows down
the spreading of the compromise process.

Moreover, we do not observe “mode-locking”. In this
phenomenon, common in pattern forming systems that
are exposed to an external spatially-periodic forcing,
there is pronounced locking of the wavelength to that
of the forcing [24, 25]. In lattice systems, one there-
fore expects the observed wavelength to be an integer,
in resonance with the unit lattice spacing, whenever the
predicted wavelength is close to an integer. In our case,
the predicted wavelength L is integer (6 or 7 or 8) for
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particular values of the mixing parameter τ . We studied
values of τ near those resonances but did not observe any
locking: the wavelength varies smoothly and adheres to
the predicted values. Further, we did not observe sub-
harmonic resonances as in [26–29], where the observed
wavelength is an integer multiple of the predicted wave-
length.

We now briefly discuss the original bounded confidence
model introduced by Weisbuch et al [1]. In that model,
opinion is quantified by a continuous variable 0 < x < N
with N the opinion spectrum. Agents can interact and
reach fair compromise but only if their opinion difference
falls below a fixed threshold, set to unity without loss of
generality [3]

(x1, x2) →
(

x1+x2

2 , x1+x2

2

)

if |x1 − x2| < 1. (17)

The probability density P (x, t) of agents with opinion x
at time t obeys the evolution equation [3]

∂

∂t
P (x, t) =

∫∫

|x1−x2|<1

dx1dx2P (x1, t)P (x2, t)

×

[

δ

(

x −
x1 + x2

2

)

− δ(x − x1)

]

(18)

If the restriction of the integration range is ignored, this
equation describes inelastic collisions [30–33]. According
to the interaction (17), opinion clusters are now perfectly
localized (delta-functions) and in the steady-state these
localized clusters are separated by distance larger than
unity.

Consider the uniform initial condition: P (x, 0) = 0
for x < 0 or x > N and P (x, 0) = 1 for 0 ≤ x ≤ N .
This state is unstable with respect to perturbations that
propagate from the boundary into the unstable uniform
state. According to (18), a small periodic disturbance
P (x, t) − 1 ∝ exp[i(kx − ωt)] has the dispersion relation

ω = 2i

[

2
sin(k/2)

k/2
−

sin k

k
− 1

]

. (19)

The fastest growing mode follows from dω/dk = 0 which
yields klinear = 2.7906 or alternatively Llinear = 2.2515.
The solution to (7) is now k∗ ≡ kfront + iλ with
kfront = 3.083750. The decay constant λ = 1.294620
characterizes the exponential decay far into the un-
stable state, φ(x) ∼ exp[−λ(x − vt)]. The wave-
length of perturbations at the propagating front is
Lfront = 2.037514. The propagation velocity v =
Im[w∗]/Im[k∗] is v = 0.794754. Far behind the propagat-
ing front, that is x ≪ vt, localized clusters form, and
these clusters are separated by distance L. The cor-
responding wavenumber is k = 2.924255 and the corre-
sponding wavelength is

L = 2.1486444707. (20)

The wavelength estimated using numerical integration re-
sults for relatively small values of N [3], L ≈ 2.155, is
reasonably close to the exact result (20).

In summary, we studied pattern formation in the
bounded confidence model of opinion dynamics. Our fo-
cus was the wavelength that governs the mosaic of frozen
clusters that develop, starting from a uniform state. We
obtained analytically the two wavelengths that govern
the pattern formation process: the wavelength of pertur-
bations at the leading edge of the traveling wave front and
the wavelength of the resulting patterns in the wake of
the wave. We examined discrete and continuous versions
of the bounded confidence model. In the former case, we
verified the theoretical predictions using high-precision
numerical measurements of the pattern wavelength and
propagation velocity.

The wavelength of the patterns is irrational and since
it is not commensurate with the regular lattice, the pat-
tern formation process is hierarchical. Frozen clusters
constitute the “building bocks” in this hierarchy. Integer
number of clusters form quasi-periodic structures and the
period of these super-patterns is an integer, too. Next,
a larger number of clusters form a more intricate super-
pattern with a larger integer period. The numbers of
clusters and the periods that characterize these super-
patterns follow from continued-fraction representation of
the irrational wavelength governing the pattern forma-
tion process.

We observed that not all rational approximations of
the wavelength necessarily correspond to a super-pattern
(see figure 6). Further analysis is therefore needed to un-
derstand why certain integer fractions are realized while
others are not, and more generally, to characterize the in-
tricate structures of the super-patterns. Another avenue
for further research is the approach toward the limiting
asymptotic values of the velocity and the period [17] that
is responsible, for example, for the enhancement of mass
at small values of the position seen in figure 2.
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from the US National Science Foundation through grants
DMS-0806614 and DMS-1311740.
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